粘弾性モデルに基づいた高分子材料の制振性

A Damping Properties for Polymers Based on Viscoelasticity Models

○小川 俊夫*
Toshio Ogawa
*金沢工業大学
Kanazawa Institute of Technology

山田 卓人**
Takuto Yamada
**金沢工業大学
Kanazawa Institute of Technology

概要：高分子材料の\(\tan\delta\)の温度依存性曲線に関して粘弾性モデルにより解析を行い、シミュレーション計算を行った。3要素モデルの構成方程式から貯蔵弾性率、損失弾性率および損失係数(\(\tan\delta\))をモデルの各要素の値で設計することが可能であった。しかしこのモデルでは粘弾性挙動を定性的には表現できるが、定量的には実際と合致しないので、合成波形の考えを取り入れた。さらに、\(\tan\delta\)温度依存性曲線下の面積(\(TA=Tangent Area\))の値から制振性を評価した。

粘弾性モデル、シミュレーション

1. はじめに

制振性を決める損失係数(\(\tan\delta\))は高分子材料の粘弾性測定の結果出てくる量であるため、ある与えられた材料については実験すれば容易に得られる。しかし実際の材料がない場合は、その\(\tan\delta\)の温度依存性を予測することは不可能であった。高分子材料の物性予測に関して最も権威のあるKrevelen教授の著書"Properties of Polymers"にも\(\tan\delta\)の予測に関する記述はない。そこで小川ら\(^9\)によって化学科学構造から制振性を予測することが報告されているが、温度領域における\(\tan\delta\)の挙動を明らかにすることができない。またCowinらが繊維ポリマー、非繊維ポリマーの粘弾性挙動に関してモデル解析を行っているが\(^{a,b}\), \(\tan\delta\)に関しては全く触れられていない。

本報では、実験データを裏付けるためにも、粘弾性モデルにより\(\tan\delta\)の温度依存性を表現し、シミュレーションにより検討

2. 粘弾性モデル

高分子材料の粘弾性モデルとして最も単純なものはMaxwellモデルおよびVoigtモデルであるが、これら単体のみではクリープおよび応力緩和の両方の性質を表現することはできない。従って、2つのモデルを組み合わせた4要素モデルが高分子材料の粘弾性挙動を表現できると言われている。

しかし4要素モデルは本報の理論上，\(\tan\delta\)の挙動において、極値を4つ持ちダブルピークになるのは確実であり、本報の操作上扱いにくいので、確実に一つのみピークが存在する、Fig.1に示すようなダッシュボットを1つ除いた3要素モデルを使用した。以下、この3要素モデルに基づき理論を展開していく。