安定度規範に基づくヒステリシス減衰型直列二重動吸振器の最適設計

○ 浅見 敏彦 (兵庫大), 山田 啓介 (関西大)

Optimal Design of a Series-Type Double-Mass Hysteretically Damped Dynamic Vibration Absorber Based on the Stability Criterion

Toshihiko Asami (University of Hyogo), Keisuke Yamada (Kansai University)

実用に供されている動吸振器のほとんどは、コイルばねと粘性ダンパで構成されているわけではなく、それらの特性を併せ持つ防振ゴムのような高分子材料が用いられている。この高分子材料の減衰力は、物体間の相対速度に比例して変化する粘性減衰ではなく、相対変位に比例するヒステリシス型の特性を持つことが実証的に確かめられている。本報告では、このような二つの動吸振器を直列に接続したヒステリシス減衰型の二重動吸振器の最適設計式を提案するのである。この動吸振器の設計規範には、主系の自由振動応答を最短時間で減衰させることを目標とする安定度最大化規範を採用した。研究の結果、主系が無減衰の場合には、動吸振器の最適設計条件は極めてシンプルな式で表現できることができた。さらに、動吸振器を二重化することによって、単一質量の動吸振器に比べて安定度が2倍近く上昇し、振動の収束時間が大幅に短縮できることが確認された。

Key words : 動吸振器, 最適設計, ヒステリシス減衰, 損失係数, インダルス応答, 高分子材料

1. 緒 言

小型の制振装置として知られる動吸振器 (DVA: Dynamic Vibration Absorber) は、通常のローリング振動を抑えるために初めて使われたとされている。その後、この動吸振器の最適化のために数多くの設計規範が提案され、現在では建築構造物、鉄道車両や自動車、および振動絶縁などの様々な分野に用いられている。動吸振器に対する代表的な設計規範は、周期的励振を受ける振動系の定常応答における共振点高さを最小化することを目標とする H_n 最適化、共振点も含めて全周波数域における主系の運動エネルギーの最小化を目標とする H_2 最適化、強制振動下での定常応答ではなく、初期励振に対する自由振動応答を最短時間で収束させることが目標とする安定度最大化がある。

近年、動吸振器の性能向上とロバスト性改善のために、二つ以上の動吸振器を組み合わせた多重動吸振器の研究が行われている。著者らも、二重動吸振器の最適化の研究に取り組み、特にそれが直列に接続された場合には、動吸振器の性能が大幅に向上することを確認した。ここで研究した動吸振器を含む振動系は、すべてが物体間の相対速度に比例して変化する粘性型の減衰力を発揮すると仮定されていた。その解析モデルは図 1(b)に示されている。

多くの動吸振器は、図 1(b)に示されるように、コイルばねと粘性ダンパによって構成されている訳ではないが、その代わりに復元性能と減衰効果を併せ持つ防振ゴムに代表される高分子材料が用いられている。実験的に、高分子材料の生み出す減衰力は、物体間の相対速度ではなく相対変位に比例するヒステリシス減衰型の特性を持つことが知られている。さらに、主系に働く減衰力についても、主系を構成する材料の内部減衰や接続部の摩耗減衰によることが多く、これらも粘性減衰ではなくヒステリシス型の減衰としてモデル化する方が適していると考える。

図 1(a)に示されるようなヒステリシス減衰型動吸振器の最適化についての研究は少なく、$m_3 = 0$ の単一質量型の動吸振器に関する著者らの研究(7),(8)以外は見当たらない。本研究は前報告の統括であり、図 1(a)に示されるようなヒステリシス減衰型の直列二重動吸振器の最適設計条件を探る。その最適化には、上記述べた第 3 番目の規範である安定度最大化規範を用いる。

Fig. 1 Analytical models of three-degree-of-freedom (3-DOF) vibratory systems.